現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:基於嵌入式系統之輪型機器人追蹤控制與實現 [以論文名稱查詢館藏系統]
論文英文名稱:The Implementation and Tracking Control for Wheeled Mobile Robot based on Embedded System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:自動化科技研究所
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:林大鈞
英文姓名:Ta-Chun Lin
研究生學號:104618025
學位類別:碩士
語文別:中文
口試日期:2017/11/08
論文頁數:67
指導教授中文名:蔡舜宏
口試委員中文名:謝尚琳;李俊賢;林宏益
中文關鍵詞:輪型機器人追蹤控制全球定位系統卡爾曼濾波
英文關鍵詞:wheeled mobile robottracking controlglobal positioning systemkalman filter
論文中文摘要:本研究基於嵌入式系統、九軸感測器與全球定位系統模組開發一手持裝置及輪型機器人以達成遠距追蹤與即時目標追蹤。首先,針對九軸感測器接收之原始數據進行校正與運算,以獲得四元數之旋轉矩陣,進而計算出準確之方向角。此外,利用卡爾曼濾波器對定位系統做降噪處理,以降低輪型機器人與手持裝置的位置誤差。在追蹤控制方面,藉由輸入感測器所得之修正數值至所採用之即時追蹤控制器,以控制輪型機器人之線性速度與角速度,並利用脈波寬度調變技術,以完成輪型機器人之遠距追蹤與即時目標追蹤控制。經由電腦模擬與實驗結果可驗證本研究開發之輪型機器人與手持裝置,可有效的達成遠距追蹤與即時目標追蹤功能。
論文英文摘要:In this research, based on the embedded system, the 9-axis sensor and the global positioning system module, a hand-held device and the wheeled mobile robot (WMR) are implemented for long-distance and real-time tracking controls. Firstly, in order to obtain the direction angle of WMR accurately, the original datum which obtained from the 9-axis sensor are corrected and the rotation matrix in quaternion are figured out. In addition, in order to reduce the error between the WMR and the hand-held device, the Kalman filter are adopted to reduce the noise. For the tracking control, by utilizing the corrected values for the real-time tracking controller, the linear and the angular velocity of the WMR can be adjusted. Furthermore, the pulse width modulation technology is adopted to implement the tracking control of WMR. Simulation and the experiment results are given to show that the developed WMR and the hand-held device can achieve the long-distance tracking and real-time tracking control.
論文目次:第一章 緒論...........................1
1.1研究背景與動機...............1
1.2研究方法與目的................2
1.3論文架構.....................3
第二章 硬體架構與開發平台介紹...........5
2.1輪型機器人之硬體架構介紹.......5
2.2手持裝置之硬體架構介紹.........5
2.3馬達驅動板....................6
2.4九軸感測器....................8
2.5無線傳輸裝置..................9
2.6全球定位系統模組...............11
2.7控制板........................12
2.8開發平台......................12
第三章 感測器系統校正...................13
3.1九軸姿態感測系統...............13
3.1.1磁力計之自動校準.............13
3.1.2傾角與重力加速度.............16
3.1.3四元數之空間座標轉換..........17
3.2全球定位系統...................22
3.2.1擷取GPS訊號..................22
3.2.2卡爾曼濾波介紹...............23
3.2.3卡爾曼濾波應用於定位系統......24
第四章 追蹤控制器設計....................25
4.1輪型機器人之數學模型............25
4.2手持裝置之數學模型..............26
4.3姿態誤差.......................27
4.4控制法則與穩定性分析............29
4.4.1控制法則.....................29
4.4.2穩定性分析...................30
4.5追蹤控制之系統架構..............30
第五章 系統架構與追蹤控制任務流程.........32
5.1即時追蹤之任務流程..............33
5.2遠距追蹤之任務流程..............35
第六章 實驗流程..........................37
6.1軟硬體配置.....................37
6.1.1輪型機器人軟硬體配置...........37
6.1.2手持裝置軟硬體配置.............40
6.2實驗與數據分析..................42
6.2.1九軸感測器傾斜實驗.............42
6.2.2卡爾曼濾波應用於定位系統實驗....43
6.2.3馬達轉速控制之實驗.............44
6.2.4感測器數據與演算法置換.........46
6.2.5控制器輸出轉換脈波寬度調變......47
6.3追蹤控制之模擬...................48
6.3.1控制器響應比較.................49
6.3.2模擬直線追蹤...................51
6.3.3模擬圓形追蹤...................53
6.3.4模擬動態追蹤...................56
6.4追蹤控制之實測...................58
6.4.1遠距追蹤實測...................59
6.4.2即時追蹤實測...................60
第七章 結論及未來展望......................62
7.1結論............................62
7.2未來展望.........................62
參考文獻..................................63
論文參考文獻:[1] G. Ullrich, Automated Guided Vehicle Systems. Springer, 2015.

[2] J. Luo, H. Ni, and M. Zhou, “Control Program Design for Automated Guided Vehicle Systems via Petri Nets,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 44–55, 2015.

[3] M. C. Kang, K. S. Kim, D. K. Noh, J. W. Han, and S. J. Ko, “A robust obstacle detection method for robotic vacuum cleaners,” IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 587–595, 2014.

[4] J. C. E. Leal, J. G. R. Torres, E. R. Tello, and J. R. M. Angulo, “Multi-robot Exploration Using Self-Biddings under Constraints on Communication Range,”
IEEE Latin America Transactions, vol. 14, no. 2, pp. 971–982, 2016.

[5] Z. Tan, S. Bi, H. Wang, and Z. Wang, “Target Tracking Control of Mobile Robot Based on Ultrasonic Sensor,” in 6th International Conference on Information Engineering for Mechanics and Materials, Inner Mongolia, 2016.

[6] J. G. Juang, C. L. Yu, C. M. Lin, R. G. Yeh, and I. J. Rudas, “Real-time image
recognition and path tracking of a wheeled mobile robot for taking an elevator,”
Acta Polytechnica Hungarica, vol. 10, no. 6, pp. 5–23, 2013.

[7]國家發展委員會. 全球人口老化之現況與趨勢. [Online]. Available:
https://www.ndc.gov.tw/cp.aspx?n=4AE5506551531B06

[8] W. Sun, S. Tang, H. Gao, and J. Zhao, “Two Time-Scale Tracking Control of Nonholonomic Wheeled Mobile Robots,” IEEE Transactions on Control Systems Technology, vol. 24, no. 6, pp. 2059–2069, 2016.

[9] D. Chwa, “Robust Distance-Based Tracking Control of Wheeled Mobile Robots Using Vision Sensors in the Presence of Kinematic Disturbances,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6172–6183,
2016.

[10] R. S. Ortigoza, J. R. G. Sanchez, V. M. H. Guzman, C. M. Sanchez, and M. M. Aranda, “Trajectory Tracking Control for a Differential Drive Wheeled Mobile Robot Considering the Dynamics Related to the Actuators and Power Stage,” IEEE Latin America Transactions, vol. 14, no. 2, pp. 657–664, 2016.

[11] Y. Bai, ARM?? Microcontroller Interrupts and Exceptions. Wiley-IEEE
Press, 2016.

[12] 必翔集團. PHFW電動輪椅車. [Online]. Available: http://www.pihsiang.com.tw/Products_Info/Pihsiang_Products.aspx?id=1

[13] T. Instruments. DRV8432 Evaluation Module. [Online]. Available: http://www.ti.com/tool/drv8432evm

[14] Invensense. MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS MotionTracking™ Device. [Online]. Available: https:
//www.invensense.com/products/motion-tracking/9-axis/mpu-9250/

[15] DFROBOT. APC220 Radio Data Module. [Online]. Available: https://www.dfrobot.com/wiki/index.php/APC220_Radio_Data_Module(SKU:TEL0005)

[16] ublox. NEO-6-Datasheet. [Online]. Available: https://www.u-blox.com/
sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf

[17] STMicroelectronics. STM32F429ZI. [Online]. Available: http://www.st.com/
en/microcontrollers/stm32f429zi.html

[18] M. Kok and T. B. Schon, “Magnetometer Calibration Using Inertial Sensors,”
IEEE Sensor Journal, vol. 16, no. 14, pp. 5679–5689, 2016.

[19] Z. Zhang, C. Xiao, K. Yin, and H. Yan, “A Magnetic Field Correction Method for the Non-ideally Placed 3-Axial Magnetometer Sensor,” in 2010 International Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), China, 2010.

[20] Invensense. MPU-9255 Register Map and Descriptions Revision 1.0. [Online].
Available: https://stanford.edu/class/ee267/misc/MPU-9255-Register-Map.pdf

[21] S. Yosi, N. J. Agung, and S. Unang, “Tilt and heading measurement using sensor fusion from inertial measurement unit,” in 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, 2015.

[22] L. Li, Y. Zhang, Z. Dong, and D. Liang, “New Faraday Rotation Estimators Based on Polarimetric Covariance Matrix,” IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 1, pp. 133–137, 2014.

[23] G. Piovan and F. Bullo, “On Coordinate-Free Rotation Decomposition: Euler Angles About Arbitrary Axes,” IEEE Transactions on Robotics, vol. 28, no. 3, pp. 728–733, 2012.

[24] V. Koch. Rotations in 3D Graphics and the Gimbal Lock. [On-line]. Available: http://www.okanagan.ieee.ca/wp-content/uploads/2016/02/GimbalLockPresentationJan2016.pdf

[25] S. Katsuki and N. Sebe, “Rotation Matrix Optimization with Quaternion,” in 2015 10th Asian Control Conference (ASCC), Malaysia, 2015.

[26] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” 2011 IEEE International Conference on Rehabilitation Robotics, 2011.

[27] NMEA Output Description. [Online]. Available: http://navspark.mybigcommerce.com/content/NMEA_Format_v0.1.pdf

[28] Y. Yang, X. Yue, and A. G. Dempster, “GPS-based Onboard Real-Time Orbit Determination for Leo Satellites Using Consider Kalman Filter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 2, pp. 769–777, 2016.

[29] M. A. Mahmud, M. S. Aman, H. Jiang, A. Abdelgawad, and K. Yelamarthi, “Kalman Filter based Indoor Mobile Robot Navigation,” in International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016.

[30] A. Roy and D. Mitra, “Multi-Target Trackers Using Cubature Kalman Filter for Doppler Radar Tracking in Clutter,” IET Signal Processing, vol. 10, no. 8, pp. 888–901, 2016.

[31] Y. Y. Li, C. C. Tsai, and Y. Z. Chen, “Face Detection, Identification and Tracking Using Support Vector Machine and Fuzzy Kalman Filter,” in 2011 International Conference on Machine Learning and Cybernetics (ICMLC), China, 2011.

[32] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A Stable Tracking Control Method for an Autonomous Mobile Robot,” 1990 IEEE International Conference on Robotics and Automation, 1990.

[33] I. M. H. Sanhoury, S. H. M. Amin, and A. R. Husain, “Tracking Control of a Nonholonomic Wheeled Mobile Robot,” Precision Instrument and Mechanology, vol. 1, no. 1, pp. 7–11, 2012.

[34] J. Wang, G. Adhikari, H. Kobayashi, N. Tsukiji, V. Hirano, K. Kurihara, A. Nagahama, L. Noda, and K. Yoshii, “Analysis and Design of Operational Amplifier Stability based on Routh-Hurwitz Method,” in 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), China, 2016.

[35] STMicroelectronics. STM32CubeMX. [Online]. Available: http://www.st.com/en/development-tools/stm32cubemx.html

[36] I. M. H. Sanhoury, S. H. M. Amin, and A. R. Husain, “Trajectory Tracking of Steering System Mobile Robot,” in 2011 4th International Conference On Mechatronics (ICOM), Kuala, 2011.
論文全文使用權限:同意授權於2022-11-16起公開