現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:新型多埠雙向電力轉換器於 混合動力電動車系統之應用 [以論文名稱查詢館藏系統]
論文英文名稱:A Novel Multiport Bidirectional Power Converter for Hybrid Electric Vehicle System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:謝明華
英文姓名:Ming-Hua Hsieh
研究生學號:104448044
學位類別:碩士
語文別:中文
口試日期:2017/07/27
論文頁數:99
指導教授中文名:賴慶明
指導教授英文名:Ching-Ming Lai
口試委員中文名:賴慶明;林長華;楊銘基
中文關鍵詞:多埠雙向電力轉換器混合動力電動車
英文關鍵詞:MultiportBidirectional DC/DC converterHybrid Electric Vehicle
論文中文摘要:本文提出的新型多埠雙向電力轉換器(Multiport Bidirectional Power Converter, MBPC),可提供三種不同電壓準位的輸入,並整合於電動車/燃料電池車系統。所提轉換器具有雙向功率控制,可操作於低壓雙能源升壓至高壓直流匯流排模式(Low-Voltage Dual-Source-Powering Boost Mode)、高壓直流匯流排對雙能源降壓充電模式(High-Voltage DC-Bus Energy-Regenerating Buck Mode)以及低壓雙輸入升/降壓模式(Low-Voltage Dual-Source Buck-Boost Mode)。本文內容包括新型多埠轉換器於不同模式下的操作方式、探討電路與模式分析、穩態分析、動態模型建立與控制迴路設計以及系統硬體實作。最後,實際製作一台功率規格為1-kW之電路原型機,輸入端電壓分別為48V和96V、輸出端電壓則為430V。藉由實驗結果可知,其量測波形與模擬波形一致且符合預期,而高壓直流匯流排對雙能源降壓充電模式下最高效率為97.25%、低壓雙能源對高壓直流匯流排升壓放電模式下最高效率為95.32%、低壓雙能源升壓模式最高效率為95.76%、低壓雙能源降壓模式最高效率為92.67%。
論文英文摘要:In this thesis, multiport bidirectional power converter (MBPC) is proposed. It can be interfaced three ports with different voltage and combined with electric/fuel-cell vehicle system. The function of proposed converter is to control bidirectional power flow between four modes such as low-voltage dual-source powering boost mode, high-voltage DC-Bus energy-regenerating buck mode and low-voltage dual-source buck-boost mode. This thesis includes induction of operation mode and circuit analysis, steady-state analysis, derivation of small-signal transfer function, control loop design and hardware implementation for proposed MBPC system. Additionally, a 1-kW prototype is built with two inputs (48V, 96V) and one output (430V). It can be known that waveforms are closed between experiment and simulation as expectation. The highest conversion efficiencies are 97.25%, 95.32%, 95.76%, and 92.67% for the high-voltage DC-Bus energy-regenerating buck mode, low-voltage dual-source powering boost mode, low-voltage dual-source boost mode, and low-voltage dual-source buck mode, respectively.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文貢獻 3
1.3 論文內容概述 4
第二章 電力轉換器應用於混合動力電動車系統 5
2.1 前言 5
2.1.1 單向直流轉換器應用於混合動力電動車系統 6
2.1.2 多埠雙向直流轉換器應用於混合動力電動車系統 7
2.2 多埠電力轉換器架構探討 8
第三章 新型多埠雙向電力轉換器 14
3.1 電路工作模式與原理 14
3.1.1 低壓雙能源對高壓直流匯流排升壓放電模式 16
3.1.2 高壓直流匯流排對低壓雙能源降壓充電模式 21
3.1.3 低壓雙能源升/降壓模式 26
3.2 穩態操作推導與分析 29
3.2.1 電壓增益比分析 29
3.2.2 電路均流特性分析 35
3.2.3 開關應力分析 36
3.2.4 電荷幫浦應力分析 36
3.2.5 各模式下各元件電流有效值計算 37
3.2.6 各元件有效值彙整 41
第四章 電力轉換器車輛能量管理策略與實現 42
4.1 車輛能量管理策略 42
4.2 新型多埠雙向電力轉換器小訊號動態模型推導 44
4.3 控制迴路設計 47
第五章 控制迴路數位化實現議題 50
5.1 前言 50
5.2 同步取樣策略 52
5.3 對稱式數位脈寬調變產生器 53
5.4 迴授信號數值量化分析 54
5.5 控制器參數值量化分析:IQ運算與尺規化 56
第六章 模擬與實驗結果驗證 58
6.1 實驗平台說明 58
6.2 穩態模擬與實驗結果驗證 66
6.2.1 低壓雙能源對高壓直流匯流排升壓放電模式 66
6.2.2 高壓直流匯流排對低壓雙能源降壓充電模式 68
6.2.3 低壓雙能源升/降壓模式 70
6.3 暫態模擬與實驗結果驗證 72
6.3.1 低壓雙能源與高壓直流匯流排升壓放電/降壓充電模式 72
6.3.2 低壓雙能源升/降壓模式 74
6.4 新型多埠雙向電力轉換器效率估算與量測 76
第七章 結論與未來研究方向 88
7.1 結論 88
7.2 未來研究方向 89
參考文獻 90
附錄A-Datasheet 93
附錄B-電路圖與電路佈局圖 95
符號彙編 99
論文參考文獻:鄭富霖、劉哲良,COP21巴黎協定:全球減碳目標及法律拘束力,經濟前瞻,2016,第107-111頁。
[2] 綠能趨勢網,全球再生能源投資額上看16兆美元,2015。
[3] G. Pede, A. lacobazzi, S. Passerini, A. Bobbio, and G. Botto, “FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train,” Journal of Power Sources, vol. 125, no. 2, pp. 280-291, Jan. 2004.
[4] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art,” IEEE Trans. Vehicular Technology, vol. 59, no. 6, pp. 2806-2814, Jul. 2010.
[5] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC),” International Power Electronics Conference, pp. 2343-2350, Dec. 2014.
[6] H. Tao, Jorge L. Duarte, Marcel A. M. Hendrix, “Multiport converter for hybrid power source,” IEEE Power Electronics Specilalists Conference, pp. 3412-3418, Aug.2008.
[7] H. Tao, A. Kotsopulos, J. L. Duarte, and M. A. M. Hendrix, “Family of multiport bidirectional DC-DC converters,” IEE Proc. Electric Power Applications, vol. 153, no. 3, pp. 451-458, May 2006.
[8] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Three-port triple-half-bridge bidirectional converter with zero-voltage switching,” IEEE Trans. Power Electronics, vol. 23, no. 2, pp. 782-792, Mar. 2008.
[9] T. Bhattacharya, V. S. Giri; K. Mathew, and L. Umanand, “Multiphase bidirectional flyback converter topology for hybrid electric vehicles,” IEEE Trans. Industrial Electronics, vol. 56, no. 1, pp. 78-84, Jan. 2009.
[10] H. Krishnaswami and N. Mohan, “Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Trans. Power Electronics, vol. 24, no. 10, pp. 2289-2297, Oct. 2009.

[11] H. Zhou and A. M. Khambadkone, “Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application,” IEEE Trans. Industry Applications, vol. 45, no. 4, pp.1434-1442, Aug. 2009.
[12] B. Zhao, Q. Song, and W. Liu, “Power characterization of isolated bidirectional dual-active-bridge dc-dc converter with dual-phase-shift control,” IEEE Trans. Power Electronics, vol. 27, no. 9, pp. 4172-4176, Sep. 2012.
[13] D. Y. Jung, S. H. Hwang, Y. H. Ji, J. H. Lee, Y. C. Jung, and C. Y. Won, “Soft-switching bidirectional dc/dc converter with a LC series resonant circuit,” IEEE Trans. Power Electronics, vol. 28, no. 4, pp. 1680-1690, Apr. 2013.
[14] B. Farhangi and H. A. Toliyat, “A novel vehicular integrated power system realized through multi-port series AC link converter,” IEEE Applied Power Electronics Conference and Exposition, pp. 1353-1359, Mar. 2015.
[15] B. Farhangi and H. A. Toliyat, “Modeling and analyzing multi-port isolation transformer capacitive components for onboard vehicular power conditioners,” IEEE Trans. Industrial Electronics, vol. 62, no. 5, pp. 3134-3142, May 2015.
[16] Z. Li, O. Onar, and A. Khaligh, “Design and control of a multiple input dc/dc Converter for battery/ultracapacitor based electric vehicle power system,” IEEE Applied Power Electronics Conference and Exposition, pp. 591-596, Feb. 2009.
[17] Y. C. Liu and Y. M. Chen, “A systematic approach to synthesizing multiinput dc-dc converters,” IEEE Trans. Power Electronics, vol. 24, no. 1, pp. 116-127, Jan. 2009.
[18] H. Wu, K. Sun, S. Ding, and Y. Xing, “Topology derivation of nonisolated three-port DC-DC converters From DIC and DOC,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2309-2325, May 2013.
[19] K. Gummi and M. Ferdowsi, “Double-input dc-dc power electronic converters for electric-drive vehicles-topology exploration and synthesis using a single-pole triple-throw switch,” IEEE Trans. Industrial Electronics, vol. 57, no. 2, pp. 617-621, Feb. 2010.
[20] L. Jiang, C. Chris Mi, S. Li, M. Zhang, X. Zhang, and C. Yin, “A novel soft-switching bidirectional dc-dc converter with coupled inductors,” IEEE Trans. Power Electronics, vol. 49, no. 6, pp. 2730-2740, Nov. 2013.
[21] A. Nahavandi, M. T. Hagh, M. B. B. Sharifian, and S. A Danyali, “Nonisolated multiinput multioutput DC-DC boost converter for electric vehicle applications,” IEEE Trans. Power Electronics, vol. 30, no. 4, pp. 1818-1835, Apr. 2015.
[22] C. M. Lai and M. J. Yang, “A high-gain three-port power converter with fuel cell, battery sources and stacked output for hybrid electric vehicles and DC-microgrids,” Energies, vol. 9, no. 3, pp.180:1-15, Mar. 2016.
[23] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Industrial Electronics, vol. 62, no. 5, pp. 3163-3172, May 2015.
[24] F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi, and S. A. Mozaffari Niapour, “Modeling and control of a new three-input DC-DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2309-2325, May 2012.
[25] W. Li, J. Xiao, Y. Zhao, and X. He, “PWM plus phase angle shift (PPAS) control scheme for combined multiport DC/DC converters,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1479–1489, Mar. 2012.
[26] Y. M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC-DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electronics, vol. 28, no. 11, pp. 5049-5062, Nov. 2013.
[27] R. J. Wai and B. H. Chen, “High-efficiency dual-input interleaved DC-DC converter for reversible power sources,” IEEE Trans. Power Electronics, vol. 29, no. 6, pp. 2903-2921, Jun. 2014.
[28] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Analysis and Design of Bi-directional DC-DC Converter in Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor,” IEEE Applied Power Electronics Conference and Exposition, pp. 706–711, Feb. 2009.
[29] Texas Instruments TMS320x2802x, Piccolo Microcontrollers.
[30] Texas Instruments TMS320x2802x, 2803x Piccolo Enhanced Pluse Width Modulator (ePWM) Module Reference Guide.
[31] STMicroelectronics, W45NM60, Power MOSFET, 2006.
[32] IXYS Corporation IXFK360N15T2 Power MOSFET Datasheet.
論文全文使用權限:同意授權於2020-10-23起公開
Oops!

系統暫時無法提供服務,您可保留畫面訊息通知系統管理員.

錯誤資訊
Status Code : 500 您點選的網頁暫時無法順利顯示,建議您稍後再使用本網站。
造成您的不便,請您多多包涵。