現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:具彈性可阻水之鈣鈦礦纖維膜應用於發光顯示器元件 [以論文名稱查詢館藏系統]
論文英文名稱:Water-Resistant Efficient Stretchable Perovskite-Embedded Fiber Membranes for Light-Emitting Diodes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:分子科學與工程系有機高分子碩士班
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:江岱樺
英文姓名:JIANG DAI-HUA
研究生學號:105518012
學位類別:碩士
語文別:中文
口試日期:20170920
論文頁數:59
指導教授中文名:郭霽慶
指導教授英文名:KUO CHI-CHING
口試委員中文名:邱昱誠;蘇昭瑾;李文亞
中文關鍵詞:鈣鈦礦聚苯乙烯-丁二烯-苯乙烯高分子纖維織物靜電紡絲發光元件
英文關鍵詞:perovskiteSBS polymerfiber membraneLEDs
論文中文摘要:近年來,無機鈣鈦礦材料研究如火如荼的展開,其優異的性質已廣泛的應用在各種光電子領域之中,但其對於暴露在大氣環境下的水解仍然是一個大問題。在本研究之中,複合鈣鈦礦奈米晶體可用拉伸型彈性高分子(聚苯乙烯-丁二烯-苯乙烯;SBS)包封,藉由靜電紡絲製備出具有疏水性質且多變色之奈米纖維,使之具有原始鈣鈦礦晶體的發光亮度也同時有疏水薄膜的保護,利用此種方式可讓鈣鈦礦在水中超過一小時。此種新穎作法首次應用在發光元件上。透過利用鈣鈦礦晶體和SBS彈性高分子組成和比例,可獲得純白色光,並具有各種相關色溫。這種利用靜電紡絲包覆鈣鈦礦作法,提高了鈣鈦礦在大氣下的穩定性,也為鈣鈦礦在大氣的穩定之中邁入了下個里程碑。
論文英文摘要:Cesium lead halide perovskite nanocrystals (NCs) with excellent intrinsic properties have been employed universally in optoelectronic applications but undergo hydrolysis even when exposed to atmospheric moisture. In the present study, composite CsPbX3 (X = Cl, Br, and I) perovskite NCs were encapsulated with stretchable [poly(styrene-butadiene-styrene); SBS] fibers by electrospinning to prepare water-resistant hybrid membranes as multicolor optical active layers. Brightly luminescent and color-tunable hydrophobic fiber membranes (FMs) with perovskite NCs were maintained for longer than 1 h in water. A unique remote FMs packaging approach was used in high-brightness perovskite light-emitting diodes (PeLEDs) for the first time. By tuning the composition and ratio of the perovskite NCs and SBS, pure white light was achieved with various correlated color temperatures. This approach provides a promising platform for embedding perovskite quantum dots (QDs) in functional fibers to improve optical stability for a new class of QDs.
論文目次:目錄

中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 鈣鈦礦材料-有機/無機鈣鈦礦 3
2.1.1 離子導電型高分子應用於鈣鈦礦元件 4
2.1.2 一般高分子應用於鈣鈦礦元件 6
2.2 鈣鈦礦材料的應用 8
2.2.1鈣鈦礦晶體應用於細胞成像中 8
2.2.2無機鈣鈦礦應用於LED發光元件 9
2.2.3鈣鈦礦材料應用於可拉伸LED發光元件 10
2.2.4鈣鈦礦材料應用於照明和顯示 11
2.3 靜電紡絲技術 12
2.3.1 靜電紡絲之簡介 12
2.3.2 靜電紡絲之原理與特有性質 13
第三章 實驗步驟 18
3.1 實驗材料 18
3.2 實驗設備 19
3.3 實驗流程 20
3.3.1 Cs-oleate的製備 20
3.3.2 合成CsPbX3 (X = Cl, Br, and I) nanocrystals (NCs) 20
3.3.3 無機鈣鈦礦奈米纖維的製備 20
3.3.4 靜電紡絲製程最佳化 21
3.3.5 無機鈣鈦礦奈米纖維膜螢光型態的探討 21
3.3.6無機鈣鈦礦奈米纖維與發光元件的應用 21
3.3.7 實驗流程圖 22
3.4 測試與分析儀器 23
3.4.1 場發型穿透電子顯微鏡(TEM) 23
3.4.2 雷射掃描共軛焦顯微鏡(Confocal Microscope) 24
3.4.3電子能譜儀(XPS) 25
3.4.4能量散佈分析儀(EDS) 26
3.4.5 X光繞射分析儀(XRD) 27
3.4.6 接觸角分析(CONTACT ANGEL) 29
3.4.7 螢光光譜儀(PL) 30
3.4.8 光學量測分析(PR670) 31
第四章 結果與討論 33
4.1無機鈣鈦礦奈米纖維膜之組成與型態分析 33
4.1.1無機鈣鈦礦奈米纖維膜之螢光型態分析 33
4.1.2 無機鈣鈦礦奈米纖維組成分析(XPS、EDS、XRD) 36
4.2 無機鈣鈦礦奈米纖維膜表面與穩定性質 42
4.3 無機鈣鈦礦奈米纖維膜結合發光元件的應用 47
第五章 結論 51
第六章 參考文獻 52
論文參考文獻:1. V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354.

2. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett. 1995, 66, 1316.

3. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.

4. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, L. Qian, Nat. Photonics 2015, 9, 259.

5. P. V. Kamat, J. Phys. Chem. C 2008, 112, 18737.

6. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C.
Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater. 2009, 8, 648.

7. G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, Chem. Rev. 2015, 115, 12732.

8. P. Alivisatos, Nat. Biotechnol. 2004, 22, 47.

9. X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969.

10. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.

11. R. C. Somers, M. G. Bawendi, D. G. Nocera, Chem. Soc. Rev. 2007, 36, 579.

12. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, D. Golberg, Adv. Mater. 2010, 22, 3161.

13. Y. Zhang, D. J. Hellebusch, N. D. Bronstein, C. Ko, D. F. Ogletree, M. Salmeron, A. P. Alivisatos, Nat. Commun. 2016, 7, 11924.

14. B. Sun, H. Sirringhaus, J. Am. Chem. Soc. 2006, 128, 16231.

15. J. S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, D. V. Talapin, Nat. Nanotechnol. 2011, 6, 348.

16. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.

17. L. Gao, K. Zeng, J. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. Song, G. Niu, J. Tang, Nano Lett. 2016, 16, 7446.

18. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 2014, 7, 2619.

19. P. Gao, M. Gratzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448.

20. M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.

21. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 2014, 7, 2619.

22. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.

23. J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162.

24. S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.

25. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.

26. D. M. Chapin, C. S. Fuller, G. L. Pearson, US patent US2780765 A (1957).

27. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics 2015, 23, 1.

28. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

29. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. (Michael) Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75.

30. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin, E. H. Sargent, Nano Lett. 2014, 14, 6281.

31. J. Kim, S.-H. Lee, J. H. Lee, K.-H. Hong, J. Phys. Chem. Lett. 2014, 5, 1312.

32. H. Huang, B. Chen, Z. Wang, T. F. Hung, A. S. Susha, H. Zhong, A. L. Rogach, Chem. Sci. 2016, 7, 5699.

33. H.-C. Wang, S.-Y. Lin, A.-C. Tang, B. P. Singh, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, R.-S. Liu, Angew. Chem., Int. Ed. 2016, 55, 7924.

34. X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han and M. Gratzel, Nat. Chem. 2015, 7, 703.

35. J. C. Yu, D. W. Kim, D. B. Kim, E. D. Jung, J. H. Park, A.-Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, Adv. Mater. 2016, 28, 6906.

36. D. Zhang, Y. Yu, Y. Bekenstein, A. B. Wong, A. P. Alivisatos, P. Yang, J. Am. Chem. Soc. 2016, 138, 13155.

37. X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, C. Yuan, Chem. Commun. 2014, 50, 6368.

38. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W. W. Yu. Adv. Mater. 2016, 28, 10088.

39. M. Meyns, M. Pera´lvarez, A. Heuer-Jungemann, W. Hertog, M. Iba´n˜ez, R. Nafria, A. Genç, J. Arbiol, M. V. Kovalenko, J. Carreras, A. Cabot, A. G. Kanaras. ACS Appl. Mater. Interfaces 2016, 8, 19579.

40. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. H. Choy, A. L. Rogach, J. Phys. Lett. 2016, 7, 4398.

41. L. Zheng, Y.-H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Chem. Commun. 2014, 50, 11196.

42. S. Pathak, N. Sakai, F. Wisnivesky Rocca Rivarola, S. D. Stranks, J. Liu, G. E. Eperon, C. Ducati, K. Wojciechowski, J. T. Griffiths, A. A. Haghighirad, A. Pellaroque, R. H. Friend, H. J. Snaith, Chem. Mater. 2015, 27, 8066.

43. Y. Wang, Y. Zhu, J. Huang, J. Cai, J. Zhu, X. Yang, J. Shen, H. Jiang, C. Li, J. Phys. Chem. Lett. 2016, 7, 4253.

44. J. Li, S. Ganesh, R. Bade, X. Shan, Z. Yu. Adv. Mater. 2015, 27, 5196.

45. Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, Shin-Tson Wu, Y. Dong. Adv. Mater. 2016, 28, 10710.

46. H. Zhang, X. Wang, Q. Liao, Z. Xu, H. Li, L. Zheng, H. Fu. Adv. Funct. Mater. 2017, 27, 1604382.

47. Y. Ling , Y. Tian , X. Wang , J. C. Wang , J. M. Knox , F. Perez-Orive ,Y. Du , L. Tan , K. Hanson , B. Ma , H. Gao. Adv. Mater. 2016, 28, 8983.

48. S. Ganesh R. Bade, X. Shan, P. Tran Hoang, J. Li, T. Geske, L. Cai, Q. Pei, C. Wang, Z. Yu. Adv. Mater. 2017, 29, 1607053.

49. X. Li , Y. Wu , S. Zhang , B. Cai , Y. Gu , J. Song , H. Zeng. Adv. Funct. Mater. 2016, 26, 2435.

50. D. H. Reneker, I. Chun, Nanotechnol. 1996, 7, 216.

51. Y. Q. Wana QG, N. Panac, Freund Publishing House Ltd. 2004, 5, 5.

52. C. Wang C-HH, J. H. Lin, Macromolecules, 2006, 39, 7662.

53. J. K. Yoo, J. Kim, Y. S. Jung, K. Kang, Adv. Mater. 2012, 24, 5452.

54. A. L. Yarin, Poly. Adv. Technol. 2011, 22, 310.

55. M. Li, Y. Z. Long, D. Yang, J. Sun, H. Yin, Z. Zhao, W. Kong, X. Jiang, Z. Fan, J. Mater. Chem. 2011, 21, 13159.

56. P. Raghavan, D. H. Lim, J. H. Ahn, C. Nah, D. C. Sherrington, H. S. Ryu, H. J. Ahn, Func. Poly. 2012, 72, 915.

57. M. Huang, Y. Si, X. Tang, Z. Zhu, B. Ding, L. Liu, G. Zheng, W. Luo, J. Yu, J. Mater. Chem. 2013, 1, 14071.

58. D. Li, Y. Xia, Adv. Mater. 2004, 16, 1151.

59. Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Polymer, 2001, 42, 09955.

60. A. L. Yarin, S. Koombhongse, D. H. Reneker, J. Physics. 2001, 90, 4836.

61. P. Ducheyne, K. E. Healy, D. W. Hutmacher, D. W. Grainger, C. J. Kirkpatrick, Comprehensive Biomaterials, 2011, 497.

62. D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. Physics. 2000, 87, 4531.

63. W. E. Teo, S. Ramakrishna, Nanotechnol. 2006,17, R89.

64. H. Fong, I. Chun, D. H. Reneker, Polymer, 1999,40, 4585.

65. D. H. Reneker, I. Chun, Nanotechnol. 1996, 7, 216.

66. M. M. Munir, A. B. Suryamas, F. Iskandar, K. Okuyama, Polymer, 2009, 50, 4935.

67. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar, J. Poly. Sci. 2005, 96, 557.

68. A. L. Yarin, E. Zussman, J.H. Wendorff, A. Greiner, J. Mater. Chem. 2007, 17, 2585.

69. Z. Chen, M. D. Foster, W. Zhou, H. Fong, D. H. Reneker, R. Resendes, I. Manners, Macromolecules, 2001, 34, 6156.

70. R. Jaeger, H. Schönherr, G. Vancso, Macromolecules, 1996, 29, 7634.
論文全文使用權限:同意授權於2020-10-30起公開
Oops!

系統暫時無法提供服務,您可保留畫面訊息通知系統管理員.

錯誤資訊
Status Code : 500 您點選的網頁暫時無法順利顯示,建議您稍後再使用本網站。
造成您的不便,請您多多包涵。