現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用金奈米棒複合上轉換奈米粒子 於光熱及光動力治療 [以論文名稱查詢館藏系統]
論文英文名稱:The Use of Gold Nanorods Hybrid Upconversion Nanoparticles in Photothermal and Photodynamic Therapy [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:106
畢業學期:第一學期
出版年度:106
中文姓名:陳紹棓
英文姓名:Chen, Shao-Pou
研究生學號:104738010
學位類別:碩士
語文別:中文
口試日期:2017/05/24
論文頁數:85
指導教授中文名:鍾仁傑;劉如熹
口試委員中文名:鍾仁傑;劉如熹;蘇昭瑾;蕭宏昇
中文關鍵詞:金奈米棒上轉換奈米粒子光熱治療光動力治療
英文關鍵詞:Gold nanorodsUpconversion nanoparticlesPhotothermal therapyPhotodynamic therapy
論文中文摘要:現今光照治療因可選擇性破壞癌細胞、低侵入性、低副作用等優點,已成為科學家積極研究之新興癌症療法。其中分別以光驅動光敏劑(photosensitizer)產熱燒蝕細胞,進行光熱治療(photothermal therapy; PTT)與以光激發光敏劑產生活性氧物質(reactive oxygen species; ROS)造成細胞凋亡,進行光動力治療(photo-dynamic therapy; PDT)作為治療途徑。
本研究以晶種成長法合成中孔洞二氧化矽層包覆之金奈米棒(mesoporous silica shell coated gold nanorods; AuNR@mS)利用靜電吸附作用與鑭系元素摻雜之上轉換奈米粒子(lanthanide-doped upconversion nanoparticles)組裝為奈米複合材料。經由金奈米棒長寬比之調控,使其短軸與長軸之表面電漿共振峰於520 nm與660 nm處對上轉換奈米粒子所釋放之螢光形成最大吸收截面(cross-section),有效地轉換上轉換之螢光,驅動金奈米棒產生熱能,進行光熱治療。同時裝載光敏劑Merocyanine 540 (MC540)於中孔洞二氧化矽層中,透過金奈米棒之表面電漿共振效應,增加MC540於上轉換螢光激發時所產生之ROS產量,進行增幅之光動力治療。並同時結合上述兩種治療方法以產生增效之光照治療。
本研究以可見光/紫外光分光光譜儀(ultraviolet/visible spectroscopy)與光激發光光譜儀(photoluminescence spectroscopy)檢測金奈米棒之表面電漿共振波段與上轉換奈米粒子放光之匹配性。並透過升溫測試與ROS產量檢測證實複合材料具良好之光照療效。經生物性檢測分析,此奈米複合材料對口腔癌細胞具良好之生物相容性。然以單道808 nm雷射照射後,該奈米複合材料可因上轉換奈米粒子之放光特性,轉換近紅外光光源至可見光波段之螢光,進而驅動金奈米棒產生光熱治療與激發MC540產生光動力治療,並以此增效之光照治療對癌細胞產生顯著之毒殺效果。
論文英文摘要:Nowadays, light therapy, which scientists are eager to study, has become a promising cancer therapy because of its selective destruction of cancer cells, low invasiveness, less side effects and other advantages. The therapeutic route is divided into two pathways. One is photothermal therapy (PTT), which ablates cancer cells by heat resulting from photosensitizer. The other one is photodynamic therapy (PDT), which induces reactive oxygen species (ROS) by light-excited photosensitizer to elicit cell apoptosis.
In this study, mesoporous silica shell coated gold nanorods (AuNR@mS) were synthesized by seed-mediated growth method. The interaction of electrostatic adsorption between AuNR@mS and lanthanide-doped upconversion nanoparticles (UCNP) assembled the nanocomposites. By controlling the aspect ratio of gold nanorods, the surface plasmon resonances of the transverse axis and the longitudinal axis formed the maximum absorption band at the wavelengths of 520 nm and 660 nm for UCNP fluorescence emission. The effective energy conversion from the absorbed light energy to heat energy by gold nanorods driving the gold nanorods to generate heat and perform PTT. Simultaneously, because of the surface plasmon resonance effect, merocyanine 540 (MC540), which was loaded in the pores of the silica layer, generated an abundant quantity of ROS after the upconversion fluorescence excitation and performed the surface plasmon resonance enhanced PDT. Meanwhile, the combination with the above two treatments produced synergistic light therapy.
In this study, the compatibility of the surface plasmon resonance bands and the upconversion fluorescence was measured by ultraviolet/visible spectroscopy and photoluminescence spectroscopy. The heating test and ROS production test confirmed that the nanocomposite materials have a good phototherapeutic ability. The nanocomposites also demonstrate good biocompatibility with oral cancer cells by biological analysis. However, after treating with single-channel 808 nm laser irradiation, the nanocomposite materials can convert near-infrared light source to fluorescence in the visible light band, and the fluorescence drives the gold nanorods to conduct PTT and triggers MC540 to perform PDT to kill cancer cells. In conclusion, this synergistic light treatment using this newly developed nanocomposite materials can cause significant cytotoxicity in cancer cells.
論文目次:摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 奈米材料之簡介 1
1.1.1 表面效應 2
1.1.2 小尺寸效應 3
1.1.3 量子侷限效應 3
1.2 金奈米棒之簡介 4
1.2.1 金奈米棒之光學性質 4
1.2.2 金奈米棒之合成法 7
1.2.3 金奈米棒之表面修飾 10
1.3 上轉換奈米粒子之簡介 14
1.3.1 上轉換奈米粒子之組成 15
1.3.2 上轉換奈米粒子之核殼結構 17
1.3.3 上轉換奈子粒子之放光機制 18
1.4 金奈米棒複合上轉換奈米粒子之應用 19
1.4.1 上轉換放光增強 19
1.4.2 光照治療 20
1.4.2.1 光熱治療 20
1.4.2.2 光動力治療 21
1.4.3 多功能奈米平台 23
1.5 研究動機與目的 24
第二章 實驗步驟與儀器分析原理 26
2.1 化學藥品 27
2.2 實驗步驟 29
2.2.1 金奈米棒之合成 29
2.2.2 中孔洞二氧化矽層包覆金奈米棒之合成 30
2.2.3 光敏劑Merocyanine 540之裝載 31
2.2.4 NaYF4:Yb/Er上轉換奈米粒子之合成 31
2.2.5 NaYF4:Yb/Er@NaYF4:Yb/Nd上轉換奈米粒子之合成 31
2.2.6 NaYF4:Yb/Er@NaYF4:Yb/Nd@NaYF4上轉換奈米粒子之合成 32
2.2.7 聚賴氨酸修飾之上轉換奈米粒子(UCNP-PLL)複合中孔洞二氧化矽層包覆金奈米棒之合成 32
2.2.8 光加熱測試 33
2.2.9 溶液與細胞中單基態氧(singlet oxygen species; ROS)產量測試 33
2.2.10 數值模擬計算(numerical simulation) 34
2.2.11 細胞生物相容性測試(biocompatibility testing) 34
2.2.12 細胞顯影 35
2.2.13 細胞毒殺測試(cytotoxicity assay) 35
2.2.14 細胞凋亡測試(Terminal deoxynucleotidyl transferase dUTP nick end labeling; TUNEL) 35
2.2.15體內動物顯影測試(in vivo imaging test) 35
2.3 儀器原理 37
2.3.1 穿透式電子顯微鏡(transmission electron microscope; TEM) 37
2.3.2 X光粉末繞射儀(X-ray powder diffraction microscopy; XRD) 38
2.3.3 紫外光/可見光吸收光譜儀(UV/VIS absorption spectroscopy) 40
2.3.4 傅立葉轉換紅外光光譜儀(Fourier-transform infrared spectro-meter) 42
2.3.5 光激發放光光譜儀(photoluminescence spectrometer) 44
2.3.6 介面電位分析儀(zeta potential analyzer) 46
2.3.7 比表面積與孔隙分析儀(surface area and porosity analysis) 47
2.3.8 雷射掃描共軛聚焦顯微鏡(laser scanning confocal microscopy) 49
第三章 結果與討論 51
3.1 中孔洞二氧化矽層包覆金奈米棒之合成與鑑定 51
3.1.1 金奈米棒長寬比之調控、UV/VIS吸收光譜與TEM影像 51
3.1.2 中孔洞二氧化矽層包覆金奈米棒之UV/VIS吸收光譜、TEM影像、FTIR官能基鑑定與比表面積與孔隙分析 52
3.1.3 MC540之裝載率測定 54
3.2 上轉換奈米粒子之合成與鑑定 55
3.2.1 上轉換奈米粒子之XRD圖譜 55
3.2.2 上轉換奈米粒子之TEM影像 56
3.2.3 上轉換奈米粒子之PL圖譜與FTIR官能基鑑定 57
3.2.4 上轉換奈米粒子之螢光壽命量測分析 59
3.3 AuNR@mS-MC-UCNP奈米複合材料之鑑定 60
3.3.1 AuNR@mS-MC-UCNP複合材料之介面電位分析與TEM影像 60
3.3.2 AuNR@mS-MC-UCNP奈米複合材料之UV/VIS吸收光譜、PL圖譜與升溫測試 62
3.3.3 AuNR@mS-MC-UCNP奈米複合材料ROS產量之檢測 64
3.3.4 AuNR@mS-MC-UCNP奈米複合材料之數值模擬計算 66
3.4 AuNR@mS-MC-UCNP奈米複合材料之增效光照治療評估 68
3.4.1 細胞生物相容性測試 68
3.4.2 OECM-1細胞對奈米複合材料之攝取測試 70
3.4.3 奈米複合材料於OECM-1細胞中ROS含量之測試 71
3.4.4 奈米複合材料對於OECM-1細胞之毒殺測試 73
3.4.5 奈米複合材料於OECM-1細胞之TUNEL測試 74
3.4.6 活體螢光影像測試 75
第四章 結論 77
參考文獻 78
論文參考文獻:[1] Zhu, W.; Bartos, P. J. M.; Porro, A. Application of Nanotechnology in Construction. Mater. Struct. 2004, 37, 649–658.
[2] Ineke, M. Nanotechnology in Europe: Scientific Trends and Organizational Dynamics. Nanotechnology 1999, 10, 1–7.
[3] Isaac, O. J.; Olivia, T.; Julia, L.; Victor, F. P. Engineered Nonviral Nanocarriers for Intracellular Gene Delivery Applications. Biomed. Mater. 2012, 7, 054106.
[4] Chen, H. M.; Liu, R. S. Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications. J. Phys. Chem. C 2011, 115, 3513–3527.
[5] Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583–592.
[6] Li, Y.; Boone, E.; El-Sayed, M. A. Size Effects of Pvp−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir 2002, 18, 4921–4925.
[7] Buffat, P.; Borel, J. P. Size Effect on the Melting Temperature of Gold Particles. Phys. Rev. A 1976, 13, 2287–2298.
[8] Kobo, R. Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17, 975–986.
[9] Daniel, M.C.; Astruc, D. Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
[10] Faraday, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. London 1857, 147, 145–181.
[11] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677.
[12] Uma, N.; Hodlur, R. M.; Rabinal, M. K. A Sharp and Visible Range Plasmonic in Heavily Doped Metal Oxide Films. Mater. Res. Express 2014, 1, 015910.
[13] Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41, 1578–1586.
[14] Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; Murray, C. B. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6, 2804–2817.
[15] Weissleder, R. A Clearer Vision for in Vivo Imaging. Nat. Biotechnol. 2001, 19, 316–317.
[16] Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K. Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano 2009, 3, 80–86.
[17] Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C. P.; Chen, L. C.; Wu, Y. C. DNA−Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation. J. Am. Chem. Soc. 2006, 128, 3709–3715.
[18] Lee, S. E.; Liu, G. L.; Kim, F.; Lee, L. P. Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Lett. 2009, 9, 562–570.
[19] Martin, C. R. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266, 1961–1966.
[20] Billot, L.; Lamy de la Chapelle, M.; Grimault, A. S.; Vial, A.; Barchiesi, D.; Bijeon, J. L.; Adam, P. M.; Royer, P. Surface Enhanced Raman Scattering on Gold Nanowire Arrays: Evidence of Strong Multipolar Surface Plasmon Resonance Enhancement. Chem. Phys. Lett. 2006, 422, 303–307.
[21] Taub, N.; Krichevski, O.; Markovich, G. Growth of Gold Nanorods on Surfaces. J. Phys. Chem. B 2003, 107, 11579–11582.
[22] Reetz, M. T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402.
[23] Jana, N. R. Gram‐Scale Synthesis of Soluble, Near‐Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small 2005, 1, 875–882.
[24] Jana, N. R.; Gearheart, L.; Murphy, C. J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 2001, 13, 2313–2322.
[25] Wiesner, J.; Wokaun, A. Anisometric Gold Colloids. Preparation, Characterization, and Optical Properties. Chem. Phys. Lett. 1989, 157, 569–575.
[26] Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (Nrs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962.
[27] Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis. J. Mater. Chem. 2002, 12, 1765–1770.
[28] Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic Metal Nanoparticles:  Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857–13870.
[29] Pérez‐Juste, J.; Liz‐Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv. Funct. Mater. 2004, 14, 571–579.
[30] Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-Like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001, 13, 1389–1393.
[31] Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold Nanorods: Their Potential for Photothermal Therapeutics and Drug Delivery, Tempered by the Complexity of Their Biological Interactions. Adv. Drug Del. Rev. 2012, 64, 190–199.
[32] Von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Res. 2009, 69, 3892–3900.
[33] Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold Nanoparticles Are Taken up by Human Cells but Do Not Cause Acute Cytotoxicity. Small 2005, 1, 325–327.
[34] Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-Modified Gold Nanorods with a Stealth Character for in Vivo Applications. J. Control. Release 2006, 114, 343–347.
[35] Dujardin, E.; Hsin, L.-B.; Wang, C. C.; Mann, S. DNA-Driven Self-Assembly of Gold Nanorods. Chem. Commun. 2001, 1264–1265.
[36] Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J.-X.; Wei, A. Hyperthermic Effects of Gold Nanorods on Tumor Cells. Nanomedicine 2007, 2, 125–132.
[37] Yu, C.; Varghese, L.; Irudayaraj, J. Surface Modification of Cetyltrimethylammonium Bromide-Capped Gold Nanorods to Make Molecular Probes. Langmuir 2007, 23, 9114–9119.
[38] Pissuwan, D.; Valenzuela, S. M.; Killingsworth, M. C.; Xu, X.; Cortie, M. B. Targeted Destruction of Murine Macrophage Cells with Bioconjugated Gold Nanorods. J. Nanopart. Res. 2007, 9, 1109–1124.
[39] Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake, Toxicity, and Gene Expression in Mammalian Cells. Small 2008, 4, 153–159.
[40] Gole, A.; Murphy, C. J. Polyelectrolyte-Coated Gold Nanorods:  Synthesis, Characterization and Immobilization. Chem. Mater. 2005, 17, 1325–1330.
[41] Sendroiu, I. E.; Warner, M. E.; Corn, R. M. Fabrication of Silica-Coated Gold Nanorods Functionalized with DNA for Enhanced Surface Plasmon Resonance Imaging Biosensing Applications. Langmuir 2009, 25, 11282–11284.
[42] Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C. Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv. Mater. 2012, 24, 1418–1423.
[43] Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst 2010, 135, 1839–1854.
[44] Barroso, M. M. Quantum Dots in Cell Biology. J. Histochem. Cytochem. 2011, 59, 237–251.
[45] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4, 11–18.
[46] Wang, F.; Liu, X. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.
[47] Dong, H.; Sun, L.-D.; Yan, C.-H. Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications. Chem. Soc. Rev. 2015, 44, 1608–1634.
[48] Wang, F.; Liu, X. Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.
[49] Diamente, P. R.; Raudsepp, M.; Van Veggel, F. C. J. M. Dispersible Tm3+-Doped Nanoparticles that Exhibit Strong 1.47 μM Photoluminescence. Adv. Funct. Mater. 2007, 17, 363–368.
[50] Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Cryst. Growth Des. 2009, 9, 4752–4758.
[51] Shen, J.; Chen, G.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri‐Doped Upconversion Colloidal Nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644–650.
[52] Qian, H.-S.; Zhang, Y. Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 2008, 24, 12123–12125.
[53] Dou, Q.; Idris, N. M.; Zhang, Y. Sandwich-Structured Upconversion Nanoparticles with Tunable Color for Multiplexed Cell Labeling. Biomaterials 2013, 34, 1722–1731.
[54] Chen, X.; Peng, D.; Ju, Q.; Wang, F. Photon Upconversion in Core-Shell Nanoparticles. Chem. Soc. Rev. 2015, 44, 1318–1330.
[55] Bloembergen, N. Solid State Infrared Quantum Counters. Phys. Rev. Lett. 1959, 2, 84–85.
[56] Auzel, F. E. Materials and Devices Using Double-Pumped-Phosphors with Energy Transfer. Proc. IEEE 1973, 61, 758–786.
[57] Chivian, J. S.; Case, W. E.; Eden, D. D. The Photon Avalanche: A New Phenomenon in Pr3+-Based Infrared Quantum Counters. Appl. Phys. Lett. 1979, 35, 124–125.
[58] Schietinger, S.; Aichele, T.; Wang, H.-Q.; Nann, T.; Benson, O. Plasmon-Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Codoped Nanocrystals. Nano Lett. 2010, 10, 134–138.
[59] Zhan, Q.; Zhang, X.; Zhao, Y.; Liu, J.; He, S. Tens of Thousands-Fold Upconversion Luminescence Enhancement Induced by a Single Gold Nanorod. Laser Photon. Rev. 2015, 9, 479–487.
[60] Henderson, B. W.; Dougherty, T. J. How Does Photodynamic Therapy Work? Photochem. Photobiol. 1992, 55, 145–157.
[61] Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387.
[62] Qian, H. S.; Guo, H. C.; Ho, P. C. L.; Mahendran, R.; Zhang, Y. Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small 2009, 5, 2285–2290.
[63] Das, M.; Mohanty, C.; Sahoo, S. K. Ligand-Based Targeted Therapy for Cancer Tissue. Expert Opin. Drug Deliv. 2009, 6, 285–304.
[64] Sun, M.; Xu, L.; Ma, W.; Wu, X.; Kuang, H.; Wang, L.; Xu, C. Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imaging‐Guided Combination Phototherapy. Adv. Mater. 2016, 28, 898–904.
[65] Liu, Y.; Liu, Y.; Bu, W.; Cheng, C.; Zuo, C.; Xiao, Q.; Sun, Y.; Ni, D.; Zhang, C.; Liu, J. Hypoxia Induced by Upconversion‐Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angew. Chem. Int. Ed. 2015, 127, 8223–8227.
[66] Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69.
[67] Williams, D. B.; Carter, C. B., The Instrument. Transmission Electron Microscopy, Springer: 2009; 141–171.
[68] 鄭信民、林麗娟, X光繞射應用簡介, 工業材料, 2002, 181, 100–108.
[69] Skoog, D. A.; West, D. M.; James Holler, F.; Crouch, S. R. Ultraviolet–Visible Spectroscopy. Fundamentals of Analytic Chemistry 8th Edition 2004, 786–787.
[70] Herzberg, G. Molecular Spectra and Molecular Structure. Volume II: Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand 1945.
[71] Jablonski Diagram. ChemWiki 2012.
[72] Bower, N. W. Principles of Instrumental Analysis. 4th Edition (Skoog, D. A.; Leary, J. J.). J. Chem. Educ. 1992, 69, A224.
[73] Kirby, B. J.; Hasselbrink, E. F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 2004, 25, 187–202.
[74] 楊正紅, 物理吸附100問, 物理吸附的普及性讀物, 1–48.
[75] 美嘉儀器-共軛焦小組, Leica Confocal Laser Scanning Microscope Technical & Application, 2000, 1–35.
論文全文使用權限:同意授權於2018-07-01起公開