現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:基於粗糙模式決策成本分析之適應性高效能視訊編碼單元深度決策 [以論文名稱查詢館藏系統]
論文英文名稱:An Adaptive Coding Unit Size Decision for HEVC Based on Rough Mode Decision Cost Analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:電子工程系研究所
畢業學年度:105
畢業學期:第二學期
中文姓名:李佳永
英文姓名:Jia -Yong Li
研究生學號:104368006
學位類別:碩士
語文別:中文
口試日期:2017/07/25
指導教授中文名:高立人
指導教授英文名:Lih-Jen Kau
口試委員中文名:范育成;陳彥霖;蔣欣翰
中文關鍵詞:高效能視訊編碼編碼單元先期分割決策先期停止分割決策
英文關鍵詞:High Efficiency Video CodingEarly splittingEarly terminationCU Size Decision
論文中文摘要:High Efficiency Video Coding(HEVC)為目前最新代的視訊編碼標準。為了能在相同影像品質下,比前代標準(H.264/AVC)具有較佳的壓縮效率,HEVC在編解碼時加入許多架構與技術,如編碼單元、預測單元和轉換單元所組成的遞迴式架構,與區塊合併(Block Merging)、自適應式樣點補償(Sample Adaptive Offset,SAO)等技術。雖然可增加效能,但35種預測模式都必須經過複雜的粗糙模式決策(Rough Mode Decision,RMD)及位元率-失真最佳化(Rate Distortion Optimization,RDO)來計算並得出最佳模式,因此時間成本(Time cost)相對更高。
為了減少CU深度決策所需的繁重運算量,故此提出一自適應式演算法以提前篩選最佳CU區塊大小,並觀察場景變化來更新決策條件,同時減少預測模式數量。經實驗證實,本論文之演算法能在影像品質與編碼效能上取得良好的平衡。
論文英文摘要:The High Efficiency Video Coding (HEVC) is known as the newest video coding standard. In order to have better compression efficiency than the previous generation standard (H.264 / AVC) under the same image quality, HEVC incorporates many architectures and techniques, such as a recursive architecture constituted by Coding Unit (CU), Prediction Unit (PU) and Transform Unit (TU), Block Merging and Sample Adaptive Offset (SAO). Although it improves the performance, it is too complex that there are 35 kinds of prediction modes must be calculated by Rough Mode Decision (RMD) and Bit-Rate Distortion Optimization (RDO) to obtain the optimal prediction mode and makes higher time cost.
In order to reduce the huge amount of computations that were used to decide the CU depth, we proposed a self-adapted algorithm to select the best CU depth earlier and reduce the candidates of prediction mode. The experimental results show that an excellent trade-off among the visual quality in PSNR, bit-rate expense and coding time performance can be achieved by the proposed approach.
論文目次:摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 編碼單元(CU)深度快速決策 3
1.4 論文架構 4
第二章 HEVC架構與編解碼軟體介紹 5
2.1 HEVC介紹 5
2.2 HEVC編碼架構 6
2.2.1 編碼單位 7
2.2.2 畫面內預測(Intra-prediction) 11
2.2.3 轉換與量化(Transform & Quantization) 12
2.2.4 熵編碼(Entropy Coding) 13
2.2.5 濾波技術 13
2.3 編譯軟體介紹 15
第三章 基於粗糙模式決策成本分析之適應性高效能視訊編碼單元深度決策 17
3.1 發現 17
3.2 分析 18
3.2.1 QP22之CU分割與不分割RMD cost走向 18
3.2.2 在不同Frame數中,RMD cost趨勢 23
3.2.3 蒐集門檻值 30
3.2.4 提前CU切割與CU終止 31
3.3 演算法流程 34
3.3.1 演算法程序 34
3.3.2 畫面內預測之資料蒐集 35
3.3.3 門檻值參數篩選 35
3.3.4 預測模式刪減 37
3.3.5 基於HEVC標準程序之演算法預測 39
第四章 實驗結果與比較 41
4.1 實驗環境設置 41
4.2 效能評估方式 43
4.3 實驗數據結果 44
4.3.1 提前分割之邊界值選擇 44
4.3.2 實驗結果─場景變化之數量接受範圍選擇 46
4.3.3 實驗結果與比較 52
4.3.4 RD-Curve 62
第五章 結論 82
參考文獻 83
論文參考文獻:[1] ITU-T and ISO/IEC JTC 1, "Advanced Video Coding for Generic Audiovisual Services," ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG4-AVC), May 2003.
[2] Gary Joseph Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard," IEEE Transactions Circuits and Systems for Video Technology, Vol. 22, No. 12, November 2012, pp. 1649–1668.
[3] Pierre Andrivon, Marco Arena, Philippe Salmon, Philippe Bordes, and Paola Sunna, "Comparison of Compression Performance of HEVC Draft 10 with AVC for UHD-1 material," JCT-VC document JCTVC-M0166, April 2013.
[4] P. Andrivon, P. Bordes, M. Arena, P. Sunna, “Comparison of Compression Performance of HEVC Draft 10 with AVC for UHD-1 material,” JCT-VC document JCTVC-M0166, Apr. 2013.
[5] M. Zhang, C. Zhao, and J. Xu, “An Adaptive Fast Intra Mode Decision in HEVC,” in Proc. 2012 IEEE International Conference on Image Processing(IEEE ICIP 2012), pp. 221-224, Oct. 2012.
[6] Seunghyun Cho and Munchurl Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning in HEVC Intra Coding,” IEEE Trans. Circuits and Systems for Video Technology, pp. 1555-1564, Vol. 23, No. 17, Sept. 2013.
[7] Jian Xiong, “Fast coding unit selection method for high efficiency video coding intra prediction,” Optical Engineering, Vol. 57, No. 7, pp. 071504-1-071504-10, July 2013. 
[8] Hao Zhang and Zhan Ma, “Fast Intra Mode Decision for High Efficiency Video Coding (HEVC),”IEEE Trans. Circuits and Systems for Video Technology, pp. 660-668, Vol. 24, No. 4, Nov. 2013.
[9] Ming-Zong Liou, " A Fast and Self-adapted Algorithm for CU Partitioning and Intra-prediction Mode Decision in HEVC Coding,", Taiwan, January 1, 2014, pp. 1-92.
[10] Han Huang, Yao Zhao, Chunyu Lin and Huihui Bai, “Fast Bottom-Up Pruningfor HEVC Intrarame Coding,” in Proc. 2013 IEEE Visual Communications and Image Processing(IEEE VCIP 2013), pp. 1-5, Nov. 2013.
[11] L Shen, Z Zhang and P An “Fast CU size decision and mode decision algorithm for HEVC intra coding,” IEEE Transactions on Consumer Electronics, pp. 207-203, Vol. 59, No. 1, February .2013.
[12] Biao Min, Ray C. C. Cheung, “A Fast CU Size Decision Algorithm for the HEVC Intra Encoder,” IEEE Transactions on Circuits and Systems for Video Technology, pp.892-896,Vol. 25,Issue: 5, May 2015.
[13]Yue-FengCen, Wan-LiangWang and Xin-WeiYao,“A fast CU depth decision mechanism for HEVC,” Information Processing Letters, Pages 719–724, Volume 115, Issue 9, September 2015.
[14] H. Sun, D. Zhou, S. Goto,“A low-complexity HEVC intra prediction algorithm based on level and mode filtering,” IEEE International Conference on Multimedia and Expo (ICME), pp.1085-1090, July 2012.
[15] Mengmeng Zhang, Chuan Zhao, and Jizheng Xu, "An adaptive fast intra mode decision in HEVC," in Proc. 2012 19th IEEE International Conference on Image Processing, Orlando, FL, September 30 – October 3, 2012, pp. 221-224. 
[16] Yun Song, Ye Zeng, Xueyu Li, Biye Cai, and Gaobo Yang, "Fast CU size decision and mode decision algorithm for intra prediction in HEVC,"Multimedia Tools and Applications, January 2017, Volume 76, Issue 2, pp 2001–2017.
[17] Video Codec for Audiovisual Services at px64 kbit/s, ITU-T Rec. H.261, version 1: Nov. 1990, version 2: March 1993.
[18] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, November 1995 (and subsequent editions).
[19] Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s - Part 2: Video, ISO/IEC 11172-2 (MPEG-1), ISO/IEC JTC 1, 1993. Coding of Audio-Visual Objects - Part 2: Visual, ISO/IEC 14496-2 (MPEG-4 Visual version 1), ISO/IEC JTC 1, April 1999 (and subsequent editions).
[20] Generic Coding of Moving Pictures and Associated Audio Information - Part 2: Video, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG 2 Video), ITU-T and ISO/IEC JTC 1, November 1994.
[21] Il-Koo Kim, Ken McCann, Kazuo Sugimoto, Benjamin Bross, Woo-Jin Han, and Gary Sullivan, "High Efficiency Video Coding (HEVC) Test Model 12 (HM12) Encoder Description," 14th Meeting: Vienna, AT, 25 July – 2 August 2013.
[22] Thomas Wiegand, Gary Joseph Sullivan, Gisle Bjøntegaard, and Ajay Luthra,"Overview of the H.264/AVC video coding standard, " IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, July 2003, pp. 560-576.
[23] ITU-T Recommendation H.264 / ISO/IEC 14496-10: "Information technology -- Coding of audio-visual objects -- Part 10: Advanced Video Coding"
[24] Gisle Bjøntegaard, "Calculation of Average PSNR Differences between RD-Curves," ITU-T SG16 Q.6, VCEG-M33, April 2001. 
[25] Frank Bossen, "Common HM Test Conditions and Software Reference Configurations," JCT-VC document JCTVC-L1100, January 2013.
[26] Stéphane Pateux, and Joel Jung, “An excel add-in for computing Bjontegaard metric and its evolution,” ITU-T Q.6/SG16 Document VCEG- AE07, 2007.
[27] Lih-Jen Kau, and Jia-Wei Leng, "A Gradient Intensity-Adapted Algorithm With Adaptive Selection Strategy for the Fast Decision of H.264/AVC Intra-Prediction Modes," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 25, No. 6, June 2015, pp. 944-957.
論文全文使用權限:不同意授權