現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:1-甲基-1H-吡咯-2-基- 2,2:6,2-三聯吡啶配位基和螯合鐵鈷金屬錯合物的結構和物理性質研究 [以論文名稱查詢館藏系統]
論文英文名稱:Structures and physical properties of 1-methyl-1H-pyrrol-2-yl-2,2’:6’,2’’-terpyridine ligand and its chelating Fe/Co metal complexes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:有機高分子研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:徐銘駿
英文姓名:Ming-Jun Hsu
研究生學號:104518033
學位類別:碩士
語文別:英文
口試日期:20170728
論文頁數:88
指導教授中文名:許益瑞
指導教授英文名:I-Jui Hsu
口試委員中文名:詹益慈 聞昱生
中文關鍵詞:粉末X光繞射X光吸收光譜X光吸收近邊緣結構X光吸收精細結構金屬錯合物螢光放光光譜
英文關鍵詞:powder x-ray diffraction (PXRD)x-ray absorption spectroscopy (XAS)x-ray absorption near edge spectroscopy (XANES)extended x-ray absorption fine structure (EXAFS)
論文中文摘要:為了設計多功能的物質含有磁性和螢光性質,我們修飾2,2:6,2-三聯吡啶(Terpy)增加第四取代位置成1-甲基-1H-吡咯-2-基- 2,2:6,2-三聯吡啶。根據先前的研究, 2,2:6,2-三聯吡啶和其螯合過渡性金屬的推電子基或拉電子基能夠影響氧化還原和光物理性質。在此,配位基1-甲基-1H-吡咯-2-基- 2,2:6,2-三聯吡啶(Mtpy)具有分子間電荷轉移性質(共振存在於吡啶和吡咯之間),以致螢光放光光譜波長相較2,2:6,2-三聯吡啶有紅移現象。此外因非輻射的去活化過程,導致隨著溶劑極性增加,量子產率下降。本研究發現一旦配位基鍵結鐵或鈷金屬,其螢光性質便消失,但鋅金屬錯合物沒有此現象。量測Zn(mtpy)2(ClO4)2螢光,所得最強螢光放光在472nm,量子產率為24.84%。

在研究鐵或鈷金屬錯合物螯合1-甲基-1H-吡咯-2-基- 2,2:6,2-三聯吡啶的部分,我們先合成出[M(mtpy)2X2] (M=Fe(II)/Co(II), and X=BF4-)。預期取代一個1-甲基-1H-吡咯-2-基- 2,2:6,2-三聯吡啶成兩個配位基NCS-形成[M(mtpy)(NCS)2]。再進一步合成利用4,4’-聯吡啶連接兩個[M(mtpy)(NCS)2]形成雙金屬錯合物[M(mtpy)(NCS)2-L-M(mtpy)(NCS)2] (L= 4,4’-bipyridine)。把[M(mtpy)2X2] (M=Fe(II)/Co(II), and X=BF4-),[M(mtpy)(NCS)2],and M=Fe錯合物溶於乙睛溶劑養晶,根據單晶繞射數據結果,兩個配位基mtpy螯合金屬且配位基NCS-並未與金屬形成鍵解而是形成陰離子平衡電荷。本研究所合成金屬錯合物皆量測螢光光譜和磁性來探究其物理性質。
論文英文摘要:In order to design a multifunctional material with magnetic and fluorescent properties, we modify 2,2’:6’,2’’-terpyridine (terpy) to 1-methyl-1H-pyrrol-2-yl-2,2’:6’,2’’-terpyridine(Mtpy) by adding a substituent at 4’-position. Based on previous studies, the electron-withdrawing or electron-releasing substituent can affect redox and photophysical properties of terpyridine and even its chelating with transition metal. In this work, the ligand of mtpy has intermolecular charge-transfer character (the  orbitals conjugation between pyridine and pyrrole units) so that photoluminescence emission spectroscopy displays a red shift effect in comparison with terpy. In addition, the increasing with solvent polarity will also reduce the quantum yield because of the nonradiation decay results. The luminescence property is quenched when the ligand bonds with iron or cobalt metal, but not for zinc complex. The luminescence measurement on Zn(mtpy)2(ClO4)2 indicates the maximum intensity at 472nm with quantum yield 24.84%.

In the study of Fe/Co metal complexes chelating by mtpy, we synthesize the [M(mtpy)2X2] (M=Fe(II)/Co(II), and X=BF4-) first, and then prospectively replace one mtpy by two NCS- ligands to form [M(mtpy)(NCS)2]. Furthermore, linking two [M(mtpy)(NCS)2 ] by 4,4’-bipyridine ligand to form a dinuclear metal complex [M(mtpy)(NCS)2-L-M(mtpy)(NCS)2] (L= 4,4’-bipyridine) is also part of our purpose. We make [M(mtpy)2X2] (M=Fe(II)/Co(II), and X=BF4-), [M(mtpy)(NCS)2] and M=Fe, complexes dissolve acetonitrile solvent to get crystals. Based on the single crystal data results, two mtpy ligands chelating metal and NCS- ligands are not bonding with metal rather than becoming counterions balances charge. The physical properties of these complexes are measured by photo-luminescence spectrum and SQUID.
論文目次:中文摘要 i
Abstract iii
誌 謝 v
CONTENTS vi
LIST OF TABLES x
LIST OF FIGURES xi
List of Compounds xiv
Chapter 1 INTRODUCTION 1
1.1 The internal charge transfer phenomenon of modified ligands 1
1.2 The UV-Vis and PL spectrum result of ligands 3
1.3 The Spin Crossover Phenomenon 4
1.4 Motivation 4
Chapter 2 THEORY 6
2.1 X-ray Diffraction 6
2.1.1 Introduction 6
2.1.2 In house XRD 7
2.1.3 Synchrotron of XRD 8
2.1.4 Cell constants indexing and space group determination 9
2.2 X-ray Absorption Spectroscopy 10
2.2.1 Introduction 10
2.2.2 X-Ray Absorption Near edge (XANES) 11
2.2.3 The K-edge of XAS 13
2.2.4 Analysis of EXAFS 14
2.3 Infrared Spectroscopy with Attenuated Total Reflectance 16
2.4 Measurement of single crystal 17
2.5 UV-Vis spectroscopy 17
2.6 Photoluminescence spectroscopy 18
Chapter 3 Experiment 19
3.1 Syntheses of Ligand and Metal Complexes 19
3.1.1 Syntheses of 1-methyl-1H-pyrrol-2-yl-2,2’:6’,2’’-terpyridine (mtpy) 19
3.1.2 Syntheses of Metal complexes 19
3.1.2.1 Syntheses of complex Fe(mtpy)2(BF4)2 (1) 19
3.1.2.2 Syntheses of complex Co(mtpy)2(BF4)2 (2) 19
3.1.2.3 Syntheses of complex Fe(mtpy)2(BF4)2 (3) 20
3.1.2.4 Syntheses of complex Co(mtpy)2(BF4)2 (4) 20
3.1.2.5 Syntheses of complex Zn(mtpy)2(ClO4)2 (5) 20
3.1.2.6 Syntheses of complex Fe(mtpy)2(BF4)2•(CH3CN) (6) 20
3.1.2.7 Syntheses of complex Co(mtpy)2((BF4)2•(CH3CN) (7) 20
3.1.2.8 Syntheses of complex Fe(mtpy)(NCS)2 (8) 21
3.1.2.9 Syntheses of complex Co(mtpy)(NCS)2 (9) 21
3.1.2.10 Syntheses of complex Fe(mtpy)2•(NCS)2•(CH3CN) (10) 21
Chapter 4 RESULTS AND DISCUSSION 22
4.1 Characterization of ligand mtpy 22
4.1.1 NMR spectrum of ligand mtpy 22
4.1.2 FTIR spectrum of ligand mtpy 23
4.1.3 Single crystal structure of mtpy 23
4.1.4 UV-Vis spectrum of mtpy 26
4.1.5 Liquid state photoluminescence spectrum of mtpy 27
4.1.6 Solid state Photoluminescence spectrum of mtpy 29
4.2 The - interaction of ligands 30
4.2.1 The calculation - interaction of ligands 30
4.3 Calculation of UV-Vis and PL spectrum for ligands 32
4.3.1 UV-Vis calculation in CH2Cl2 solvent 32
4.4 Characterization of complex Zn(mtpy)2(ClO4)2 (5) 36
4.4.1 FTIR of complex 5 36
4.4.2 Single crystal of complex 5 37
4.4.3 Solid state UV-Vis and PL of complex 5 40
4.4.4 Liquid state UV-Vis and PL of complex 5 41
4.5 Calculation of ligands and complexes quantum yield 42
4.5.1 Relative quantum yield analysis 42
4.5.2 Solid state of quantum yield 44
4.6 Characterization of Fe(mtpy)2(BF4)2 (1) 45
4.6.1 FTIR of Fe(mtpy)2(BF4)2 (1) 45
4.6.2 Indexing of complex Fe(mtpy)2(BF4)2 (1) 46
4.7 Characterization of complex Co(mtpy)2(BF4)2 (2) 47
4.7.1 FTIR of complex Co(mtpy)2(BF4)2 (2) 47
4.7.2 Indexing of complex Co(mtpy)2(BF4)2 (2) 48
4.7.3 SQUID measurement for Co(mtpy)2(BF4)2 (2) 49
4.8 The single crystal of complex Fe(mtpy)2(BF4)2 (3) and Co(mtpy)2(BF4)2 (4) 50
4.8.1 Single crystal of complex 3 50
4.8.2 Single crystal of Co(mtpy)2(BF4)2 (4) 53
4.9 Single crystal of Fe(mtpy)2(BF4)2•(CH3CN) (6) and Co(mtpy)2(BF4)2•(CH3CN) (7) 55
4.9.1 Single crystal of Fe(mtpy)2(BF4)2•(CH3CN) (6) 55
4.9.2 Single crystal of Co(mtpy)2(BF4)2•(CH3CN) (7) 57
4.10 Characterization of Fe(mtpy)(NCS)2 (8) 59
4.10.1 FTIR spectrum of complex 8 59
4.10.2 Indexing of Fe(mtpy)(NCS)2 (8) 59
4.10.3 S K-edge XAS of complex Fe(mtpy)(NCS)2 (8) 60
4.10.4 O K-edge XAS of complex Fe(mtpy)(NCS)2 (8) 61
4.11 Characterization of Co(mtpy)(NCS)2 (9) 62
4.11.1 FTIR spectrum of complex 9 62
4.11.2 Indexing of Co(mtpy)(NCS)2 (9) 63
4.11.3 S K-edge of Co(mtpy)(NCS)2 (9) 64
4.12 Single crystal of Fe(mtpy)2•(NCS)2•(CH3CN) (10) 66
4.13 The bonding distances comparison of Co(ftpy)2(BF4)2, Co(mtpy)2(BF4)2, and Co(mtpy)2(BF4)2•(CH3CN) 69
Chapter 5 SUMMARY AND FUTURE PERSPECTIVE 70
REFFRENCES 72
APPENDIX 76
Complexes indexing for systematic absences 76
Fe(mtpy)2(BF4)2 (1) Space group is P21/n 76
Co(mtpy)2(BF4)2 (2) Space group is P21/n 78
Fe(mtpy)2(NCS)2 (8) Space group is P21/n 81
Co(mtpy)2(NCS)2 (9) Space group is P21/n 84
Table A1. List of material 88
論文參考文獻:1. Maroń, A.; Szlapa, A.; Klemens, T.; Kula, S.; Machura, B.; Krompiec, S.; Małecki, J.; Świtlicka-Olszewska, A.; Erfurt, K.; Chrobok, A. Tuning the Photophysical Properties of 4′-substituted Terpyridines – an Experimental and Theoretical Study. Org. Biomol. Chem. 2016, 14, 3793-3808.
2. Klemens, T.; Świtlicka-Olszewska, A.; Machura, B.; Grucela, M.; Schab-Balcerzak, E.; Smolarek, K.; Mackowski, S.; Szlapa, A.; Kula, S.; Krompiec, S.; Lodowski, P.; Chrobok, A. Rhenium(I) Terpyridine Complexes – Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices. Dalton Trans. 2016, 45, 1746-1762.
3. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chem. Mater. 2013, 25, 3766-3771.
4. Haberhauer, G. Planarized and Twisted Intramolecular Charge Transfer: A Concept for Fluorophores Showing Two Independent Rotations in Excited State. Chem. Eur. J. 2017, 23, 9288-9296.
5. Sumalekshmy, S.; Gopidas, K. Photoinduced Intramolecular Charge Transfer in Donor−Acceptor Substituted Tetrahydropyrenes. J. Phys. Chem. B 2004, 108, 3705-3712.
6. Pitoňák, M.; Neogrády, P.; R̆ezáč, J.; Jurečka, P.; Urban, M.; Hobza, P. Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations. J. Chem. Theor. Comput. 2008, 4, 1829-1834.
7. Seiji, T.; Tadafumi. U.; Kazunari, M.; Masuhiro, M.; Kazutoshi, T. Effects of the Higher Electron Correlation Correctin on the Calculated Intermolecular Intermolecular Interaction Energies of Benzene and Naphthalene Dimers: Comparison between MP2 and CCSD(T) Calculations. Chem. Phys. Lett. 2000, 319, 547-554.
8. Sinnokrot, M.; Valeev, E.; Sherrill, C. Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer. J. Amer. Chem. Soc. 2002, 124, 10887-10893.
9. Sinnokrot, M.; Sherrill, C. Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations. J. Amer. Chem. Soc. 2004, 126, 7690-7697.
10. Richard L. J.; Grant D. S. A Quantum Chemistry Study of Benzene Dimer. J. Phys. Chem. 1996, 105.
11. Pavel H.; Heinrich L.; Selzle.; Edward. S. Potentical Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Sharped and Parallel-Displaced. J. Phys. Chem. 1996, 100, 48.
12. Sinnokrot, M.; Sherrill, C. Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A. 2004, 108, 10200-10207.
13. Sinnokrot, M.; Sherrill, C. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A. 2006, 110, 10656-10668.
14. Arnstein, S.; Sherrill, C. Substituent Effects in Parallel-Displaced π–π Interactions. PCCP. 2008, 10, 2646.
15. Andreev, Y.; MacGlashan, G.; Bruce, P. Ab Initio Solution of A Complex Crystal Structure from Powder-Diffraction Data Using Simulated-Annealing Method and a High Degree of Molecular Flexibility. Phys. Rev. B. 1997, 55, 12011-12017.
16. Gütlich, P.Goodwin, H. Spin Crossover—an Overall Perspective. Top. Curr. Chem. 1-47.
17. Hauser, A. Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. Top. Curr. Chem. 155-198.
18. Gutlich, P.; Ksenofontov, V.; Gaspar, A. Pressure Effect Studies On Spin Crossover Systems. Coord. Chem. Rev. 2005, 249, 1811-1829.
19. Real, J.; Gaspar, A.; Muñoz, M. Thermal, Pressure and Light Switchable Spin-Crossover Materials. Dalton Trans. 2005, 2062.
20. Richter, B.; Kirste, A.; Hansel, S.; von Ortenberg, M.; Absmeier, A.; Linert, W.; Groessinger, R., Field Induced Low-Spin High-Spin Transition, J. Magn. Magn. Mater. 2007, 310, 2731-2733.
21. Martínez, V.; Arcís Castillo, Z.; Muñoz, M.; Gaspar, A.; Etrillard, C.; Létard, J.; Terekhov, S.; Bukin, G.; Levchenko, G.; Real, J. Thermal-, Pressure- and Light-Induced Spin-Crossover Behaviour in the Two-Dimensional Hofmann-Like Coordination Polymer [Fe(3-Clpy)2 Pd(CN)4 ]. Eur. J. Inorg. Chem. 2013, 813-818.
22. Habib, F.; Luca, O.; Vieru, V.; Shiddiq, M.; Korobkov, I.; Gorelsky, S.; Takase, M.; Chibotaru, L.; Hill, S.; Crabtree, R.; Murugesu, M. Influence of the Ligand Field on Slow Magnetization Relaxation Versus Spin Crossover in Mononuclear Cobalt Complexes. Angew. Chem. Int. Ed. 2013, 52, 11290-11293.
23. Cullity, B. D.; Stock, S. R., Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper saddle River, NJ. 2001.
24. Yi-wei. T.; Ying-Yi. C.; Yu-Hsin W.; Kun-Yuan L.; Shih-Lun L.; Shih-Lin. C. High-Resolution Interference-Monochromator for Hard X-Rays. Opt. soc. Amer. 2016, 24, 26.
25. De Wolff, P. The Definition of the Indexing Figure of Merit M20. J. Appl. Crystallogr. 1972, 5, 243-243.
26. Smith, G.; Snyder, R. F. N. A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing. J. Appl. Crystallogr. 1979, 12, 60-65.
27. Yano, J.; Yachandra, V. X-Ray Absorption Spectroscopy. Photosynth. Res. 2009, 102, 241-254.
28. Abbate, M.; Fuggle, J.; Fujimori, A.; Tjeng, L.; Chen, C.; Potze, R.; Sawatzky, G.; Eisaki, H.; Uchida, S. Electronic Structure and Spin-State Transition Oflacoo3. Phys. Rev. B. 1993, 47, 16124-16130.
29. Collison, D.; Garner, C.; McGrath, C.; Mosselmans, J.; Roper, M.; Seddon, J.; Sinn, E.; Young, N. Soft X-Ray Induced Excited Spin State Trapping and Soft X-Ray Photochemistry at the Iron LII,III Edge In [Fe(Phen)2(NCS)2] and [Fe(Phen)2(Ncse)2] (Phen=1,10-Phenanthroline). J. Chem. Soc., Dalton Trans. 1997, 4371-4376.
30. Koningsberger, D.; Prins, R. X-Ray Absorption; 1st ed.; Wiley: New York, 1987.
31. Penner-hahn, J. E. X-Ray Absorption Spectroscopy, University of Michigan, Ann Arbor, MI, USA.
32. Frenkel, A.; Stern, E.; Voronel, A.; Qian, M.; Newville, M. Solving the Structure of Disordered Mixed Salts. Phys. Rev. B. 1994, 49, 11662-11674.
33. Ravel, B.; Newville, M. ATHENA and ARTEMIS Interactive Graphical Data Analysisusing IFEFFIT. Phys. Scr. 2005, 1007.
34. Brouwer, A. Standards for Photoluminescence Quantum Yield Measurements in Solution. Pure. Appl. Chem. 2011, 83.
35. David, L.; Williams, Adam H. Intramolecular Proton Transfer Reaction in Excited Fluorescent Compounds. J. Phys. Chem. 1970, 74, 26.
36. Wei, Y.; Li, H.; Hao, H.; Chen, Y.; Dong, C.; Wang, G. β-Cyclodextrin Functionalized Mn-Doped ZnS Quantum Dots for the Chiral Sensing of Tryptophan Enantiomers. Polym. Chem. 2015, 6, 591-598.
37. He, Q.; Shi, J.; Cui, X.; Zhao, J.; Chen, Y.; Zhou, J. Rhodamine B-co-Condensed Spherical SBA-15 Nanoparticles: Facile co-Condensation Synthesis and Excellent Fluorescence Features. J. Mater. Chem. 2009, 19, 3395.
38. A. T. R. Williams.; S. A. Winfield.; J. N. Miller. Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer. The Analyst, 1983, 108, 1067–1071.
39. Dhami, S.; A. J. DeMello G.; Rumbles, S. M.; Bishop, D. Phillips A. Beeby Phthalocyanine Fluorescence at High Concentration: Dimers or Reabsorption Effect Photochem. Photobiol. 1995, 61, 341–346.
40. Yuan S. L.; Paul de M.; William R. W. Photophysics of Polycyclic Aromatic Hydrocarbons Adsorbed on Silica Gel Surfaces. 3. Fluorescence Quantum Yield and Radiative Decay Rate Constants Derived from Lifetime Distributions. J. Phys. Chem. 1993, 97, 22.
41. Gütlich, P.; Gaspar, A.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342-391.
42. Leita, B.; Moubaraki, B.; Murray, K.; Smith, J.; Cashion, J. Structure and Magnetism of a New Pyrazolate Bridged Iron(II) Spin Crossover Complex Displaying a Single HS–HS to LS–LS transition. Chem. Commun. 2004, 156-157.
43. Ksenofontov, V.; Gaspar, A.; Real, J.; Gütlich, P. Pressure-Induced Spin State Conversion in Antiferromagnetically Coupled Fe(II) Dinuclear Complexes. J. Phys. Chem. B. 2001, 105, 12266-12271.
論文全文使用權限:不同意授權